117 research outputs found

    The Caulobacter crescentus DNA-(adenine-N6)-methyltransferase CcrM methylates DNA in a distributive manner

    Get PDF
    The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874–2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid

    An Assessment of the Role of DNA Adenine Methyltransferase on Gene Expression Regulation in E coli

    Get PDF
    N6-Adenine methylation is an important epigenetic signal, which regulates various processes, such as DNA replication and repair and transcription. In γ-proteobacteria, Dam is a stand-alone enzyme that methylates GATC sites, which are non-randomly distributed in the genome. Some of these overlap with transcription factor binding sites. This work describes a global computational analysis of a published Dam knockout microarray alongside other publicly available data to throw insights into the extent to which Dam regulates transcription by interfering with protein binding. The results indicate that DNA methylation by DAM may not globally affect gene transcription by physically blocking access of transcription factors to binding sites. Down-regulation of Dam during stationary phase correlates with the activity of TFs whose binding sites are enriched for GATC sites

    Exocyclic Carbons Adjacent to the N6 of Adenine are Targets for Oxidation by the Escherichia coli Adaptive Response Protein AlkB

    Get PDF
    The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N[superscript 6] atom of adenine. The observation of oxidation of a carbon at N[superscript 6] in EA prompted us to evaluate N[superscript 6]-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo.National Institutes of Health (U.S.) (Grant number CA080024)National Institutes of Health (U.S.) (Grant number CA26731)National Institutes of Health (U.S.) (Grant number ES02109

    MASTREE+ : time-series of plant reproductive effort from six continents

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    The Pathogenic Properties of a Novel and Conserved Gene Product, KerV, in Proteobacteria

    Get PDF
    Identification of novel virulence factors is essential for understanding bacterial pathogenesis and designing antibacterial strategies. In this study, we uncover such a factor, termed KerV, in Proteobacteria. Experiments carried out in a variety of eukaryotic host infection models revealed that the virulence of a Pseudomonas aeruginosa kerV null mutant was compromised when it interacted with amoebae, plants, flies, and mice. Bioinformatics analyses indicated that KerV is a hypothetical methyltransferase and is well-conserved across numerous Proteobacteria, including both well-known and emerging pathogens (e.g., virulent Burkholderia, Escherichia, Shigella, Vibrio, Salmonella, Yersinia and Brucella species). Furthermore, among the 197 kerV orthologs analyzed in this study, about 89% reside in a defined genomic neighborhood, which also possesses essential DNA replication and repair genes and detoxification gene. Finally, infection of Drosophila melanogaster with null mutants demonstrated that KerV orthologs are also crucial in Vibrio cholerae and Yersinia pseudotuberculosis pathogenesis. Our findings suggested that KerV has a novel and broad significance as a virulence factor in pathogenic Proteobacteria and it might serve as a new target for antibiotic drug design

    Insensitivity of chloroplast gene expression to DNA methylation

    Get PDF
    Presence and possible functions of DNA methylation in plastid genomes of higher plants have been highly controversial. While a number of studies presented evidence for the occurrence of both cytosine and adenine methylation in plastid genomes and proposed a role of cytosine methylation in the transcriptional regulation of plastid genes, several recent studies suggested that at least cytosine methylation may be absent from higher plant plastid genomes. To test if either adenine or cytosine methylation can play a regulatory role in plastid gene expression, we have introduced cyanobacterial genes for adenine and cytosine DNA methyltransferases (methylases) into the tobacco plastid genome by chloroplast transformation. Using DNA cleavage with methylation-sensitive and methylation-dependent restriction endonucleases, we show that the plastid genomes in the transplastomic plants are efficiently methylated. All transplastomic lines are phenotypically indistinguishable from wild-type plants and, moreover, show no alterations in plastid gene expression. Our data indicate that the expression of plastid genes is not sensitive to DNA methylation and, hence, suggest that DNA methylation is unlikely to be involved in the transcriptional regulation of plastid gene expression

    The Effects of Vitamin D Receptor Silencing on the Expression of LVSCC-A1C and LVSCC-A1D and the Release of NGF in Cortical Neurons

    Get PDF
    Recent studies have suggested that vitamin D can act on cells in the nervous system. Associations between polymorphisms in the vitamin D receptor (VDR), age-dependent cognitive decline, and insufficient serum 25 hydroxyvitamin D(3) levels in Alzheimer's patients and elderly people with cognitive decline have been reported. We have previously shown that amyloid β (Aβ) treatment eliminates VDR protein in cortical neurons. These results suggest a potential role for vitamin D and vitamin D-mediated mechanisms in Alzheimer's disease (AD) and neurodegeneration. Vitamin D has been shown to down-regulate the L-type voltage-sensitive calcium channels, LVSCC-A1C and LVSCC-A1D, and up-regulate nerve growth factor (NGF). However, expression of these proteins when VDR is repressed is unknown. The aim of this study is to investigate LVSCC-A1C, LVSCC-A1D expression levels and NGF release in VDR-silenced primary cortical neurons prepared from Sprague-Dawley rat embryos.qRT-PCR and western blots were performed to determine VDR, LVSCC-A1C and -A1D expression levels. NGF and cytotoxicity levels were determined by ELISA. Apoptosis was determined by TUNEL. Our findings illustrate that LVSCC-A1C mRNA and protein levels increased rapidly in cortical neurons when VDR is down-regulated, whereas, LVSCC-A1D mRNA and protein levels did not change and NGF release decreased in response to VDR down-regulation. Although vitamin D regulates LVSCC-A1C through VDR, it may not regulate LVSCC-A1D through VDR.Our results indicate that suppression of VDR disrupts LVSCC-A1C and NGF production. In addition, when VDR is suppressed, neurons could be vulnerable to aging and neurodegeneration, and when combined with Aβ toxicity, it is possible to explain some of the events that occur during neurodegeneration

    Genomics and proteomics of vertebrate cholesterol ester lipase (LIPA) and cholesterol 25-hydroxylase (CH25H)

    Get PDF
    Cholesterol ester lipase (LIPA; EC 3.1.1.13) and cholesterol 25-hydroxylase (CH25H; EC 1.14.99.48) play essential role in cholesterol metabolism in the body by hydrolysing cholesteryl esters and triglycerides within lysosomes (LIPA) and catalysing the formation of 25-hydroxycholesterol from cholesterol (CH25H) which acts to repress cholesterol biosynthesis. Bioinformatic methods were used to predict the amino acid sequences, structures and genomic features of several vertebrate LIPA and CH25H genes and proteins, and to examine the phylogeny of vertebrate LIPA. Amino acid sequence alignments and predicted subunit structures enabled the identification of key sequences previously reported for human LIPA and CH25H and transmembrane structures for vertebrate CH25H sequences. Vertebrate LIPA and CH25H genes were located in tandem on all vertebrate genomes examined and showed several predicted transcription factor binding sites and CpG islands located within the 5′ regions of the human genes. Vertebrate LIPA genes contained nine coding exons, while all vertebrate CH25H genes were without introns. Phylogenetic analysis demonstrated the distinct nature of the vertebrate LIPA gene and protein family in comparison with other vertebrate acid lipases and has apparently evolved from an ancestral LIPA gene which predated the appearance of vertebrates
    corecore